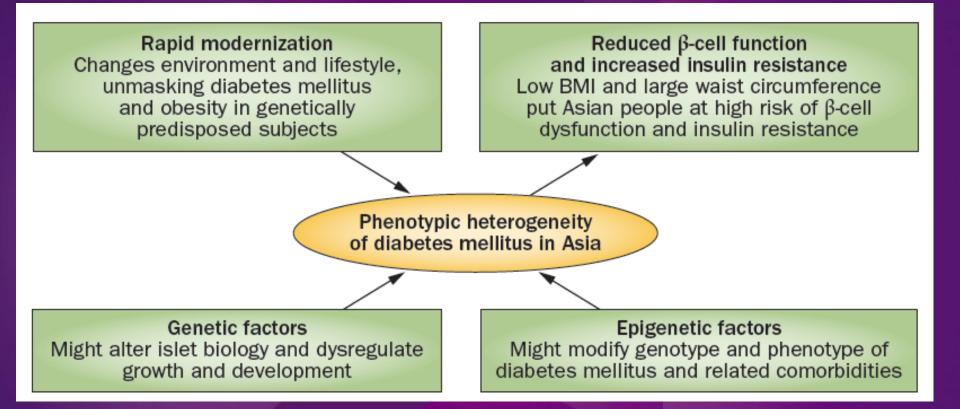
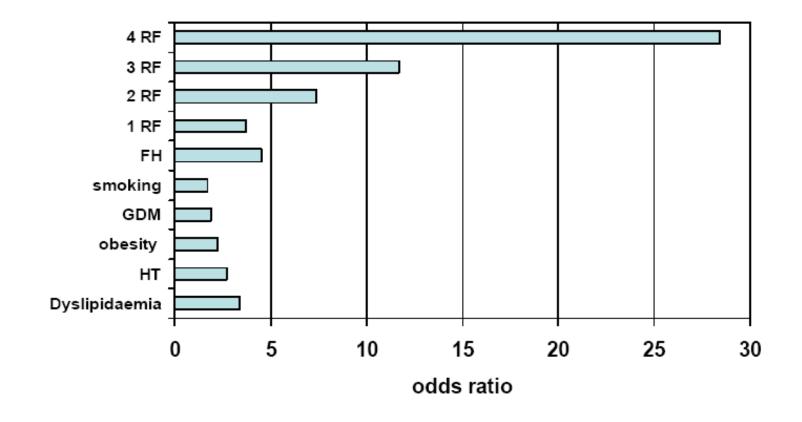
8th November, 2013 ICDM and 5th AASD Scientific Meeting Seoul, Korea

Genome-wide association study in a Chinese population identifies a novel locus for T2DM

Ronald Ma Department of Medicine and Therapeutics The Chinese University of Hong Kong Hong Kong


International Diabetes Federation IDF Centre of Education 2011 - 2015

Outline


Update on the genetic basis of T2 DM
Studies in East Asian populations
HK-Shanghai GWAS for T2 DM
Implications of findings and further work

Phenotypic heterogeneity of Diabetes in Asians

Kong AP, et al, Nat Rev Endocrinol 2013; May 28 Ma RC and Chan JC. Ann N Y Acad Sci 2013; April Ramachandran A, Ma RC et al, Lancet 2010; 375: 408-18 Chan JC et al, JAMA 2009; May 27

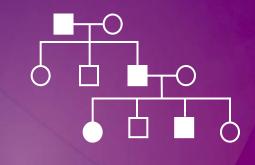
Clinical Predictors of T2 DM in Chinese

1649 adults with RF for DM All underwent 75g OGTT, 15% T2 DM

Ko GT et al, Diabetes Care 2002

Searching for disease-related genetic variants

Approaches to genetic studies

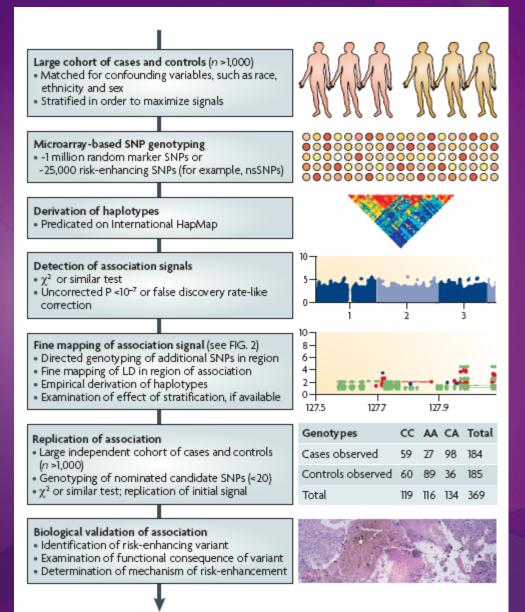

1) Linkage analysis
2) Candidate Gene Approach

Case: Control Study
Prospective cohort study

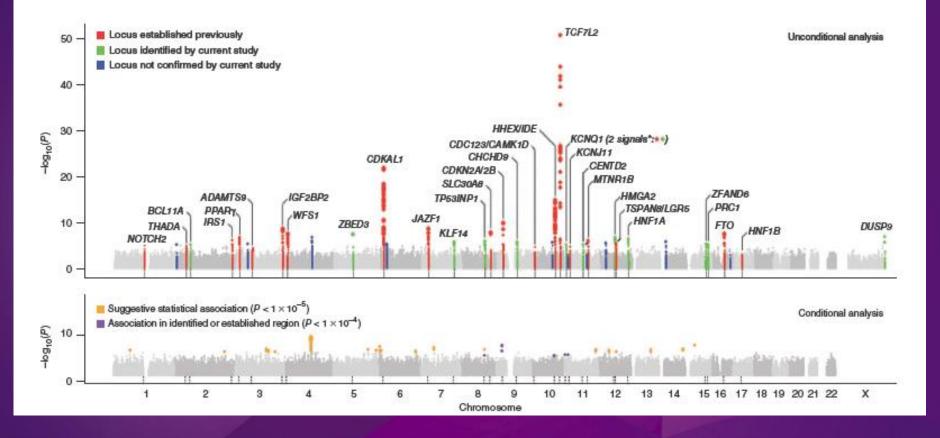
3) Genome Wide Association Studies
4) Bioinformatics analysis

Strategies for discovering genetic factors for diseases

Rare variant, rare disease (linkage, exome sequencing)

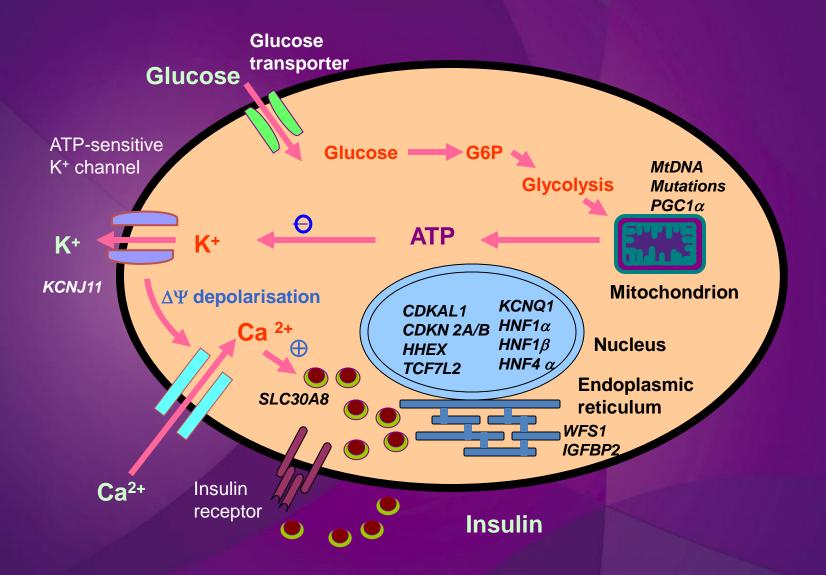

Rare variant, common disease (resequencing)

Common variant, common disease (association)

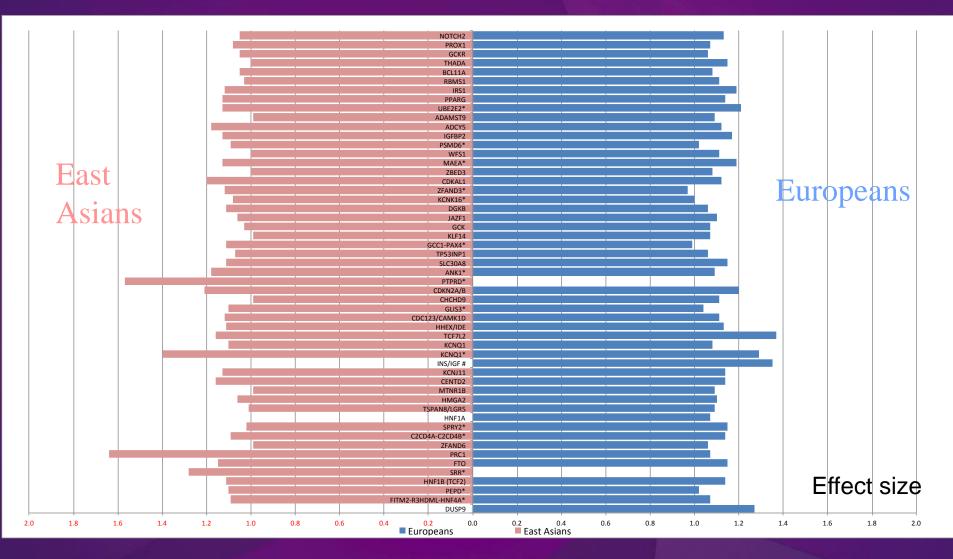

Allele Frequency

Genome Wide Association Studies (GWAS)

Kingsmore SF et al, Nature Reviews Drug Discovery 2008

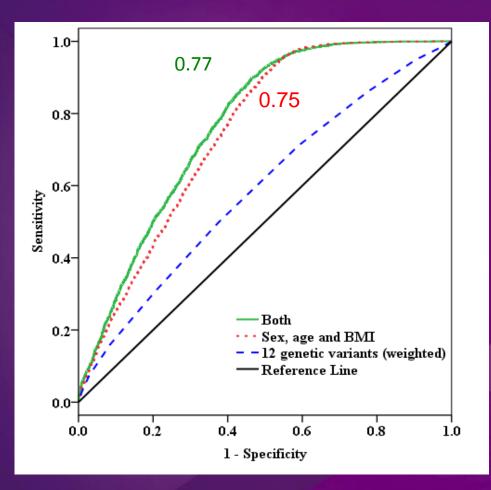

Identified genetic variants for T2 DM

Gene regions as of 7 Nov 2013: >70


Voigt B et al, Nature Genetics 2010

Biological function of T2 DM variants

Ramachandran A, Ma RC and Snehalatha DC, Lancet 2010; Jan 30; 375: 408-18


Genetic markers in E.Asians vs Europeans

> 60 variants discovered

Ma RC and Chan JC, Annals NY Acad Sci 2013

> 70 variants explain<10% of heritability of T2D</p>

5,882 T2DM a 2,569 healthy controls

Tam CH et al, PLoS One, in press

LETTERS

rs10906115 10p13 rs 1359790 13q31.1

Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mel

Kazuki Yasuda¹, Kazuaki Miyake², Yuk Yushi Hirota², Hiroyuki Mori², Anna He-Yao Wang^{1,27}, Toshihito Tanahashi Yasuhiko Iwamoto¹², Yuichiro Yamada Jun Takeda³, Eiichi Maeda¹⁵, Hyoung Maggie C Y Ng¹⁸, Ronald C W Ma¹⁸ Tiinamaija Tuomi^{19,20}, Peter Nilsson²¹ Yusuke Nakamura²³, Ken Yamamoto²⁴ Hideichi Makino⁵, Kishio Nanio⁶, Taki

KCNQ1

nature genetics

Group

Publishing

We carried out a multistage genome-wide as type 2 diabetes mellitus in Japanese individua 1,612 cases and 1,424 controls and 100,000 significant association was obtained with SNI dense mapping within the gene revealed that intron 15 showed the lowest P value (6.7 \times (OR) = 1.49). The association of KCNQ1 with was replicated in populations of Korean, Chi ancestry as well as in two independent Japan and meta-analysis with a total of 19,930 indi cases and 10,361 controls) yielded a P value (OR = 1.40; 95% CI = 1.34-1.47) for rs223 control subjects, the risk allele of this polyme

¹Department of Metabolic Disorder, Research Institute, I Endocrinology, Department of Internal Medicine, Kobe Ur Division of Molecule and Structure, Gifu University Scho University of Tokyo Tokyo 113-8655 Japan ⁵Department Japan. ⁶First Department of Medicine, Wakayama Medica University Hospital Malmö, Lund University, S-205 02 M 565-0871, Japan. 9Division of Molecular Metabolism and Information, Institute for Genome Research, University of University of Medicine, Graduate School of Medical Scient Tokyo 162-8666, Japan. 13Department of Diabetes and C and Metabolism, Department of Medicine, Shiga Univers Graduate School of Medicine, Kobe 650-0017, Japan. 14 Medicine, Seoul National University College of Medicine Shatin, Hong Kong, ¹⁹Department of Medicine, Helsinki Finland. ²¹Department of Clinical Sciences, Medicine Re Medicine, Department of Advanced Biomedical Engineer Institute of Physical and Chemical Research (RIKEN), YoOPEN @ ACCESS Freely evaluate online

Identification of New Genetic Risk Variants for Type 2 Diabetes

Xiao Ou Shu¹*, Jirong Long¹, Qiuyin Cai¹, Lu Qi², Yong-Bing Xiang³, Yoon Shin Cho⁴, E. Shyong Tai^{5,4,7}, Xiangyang Li⁸, Xu Lin⁹, Wong-Ho Chow¹⁰, Min J

Marilyn C. Cornelis², Kai Yu¹⁰, Wanging Wen¹, Jia Qibin Qi⁹, Hyung-Lae Kim⁴, Daniel P. K. Ng⁶, Jong Wei Zheng¹, Frank B. Hu²

1 Division of Epidemiology, Department of Medidine, Vanderbilt Epidemiolog Nativille, Tennessee, United States of America, 2Departments of Epidemiology States of America, 3 Department of Spidemiology, Shanghai Cancer Institute, 5 Koea, SDepartment of Medidine Yong Loo Un School of Medidine, National L Health, Yong Loo Lin School of Medicine, National University of Singapore, S Singapore, Singapore, 8 Department of Nutrition and Rood Hygiene and MOI Hashong University of Science and Technology, Wuhan, China, 9 Key Laborate Biological Sciences, Chinese Academy of Sciences and Graduate School of the Genetics, National Cancer Institute, Rockville, Maryland, United States of America Vand while University School of Medicine, Nashville, Tennessee, United States (

Abstract

Although more than 20 genetic susceptibility loci have be small to moderate effects and account for only a small prointerperson genetic variation in this disease remains t association study (GWAS) within the Asian Consortium of SNPs genotyped in 1,019 T2D cases and 1,710 controls s 2,100 SNPs that were not in linkage disequilibrium (r²<0.) conducted among European Americans, Koreans, and Sing independent set of 1,645 cases and 1,649 controls from Sh 3,316 controls from 2 additional Chinese studies. Consi (13q31.1), rs10906115 (10p13), and rs1436955 (15q22.2) w 1.45×10⁻⁸ (1.13, 1.08-1.18), and 7.14×10⁻⁷ (1.13, 1.08-1. controls. Our study provides strong evidence for a now independent risk variants near regions (10p13 and 15q22

University, Pukuoka 812.48582, Japan. ²⁶Genetics Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan. ²⁶Department of Humi Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan. 27 Present addresses: Department of Medical Biochemistry, Faculty of Medic Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K. Yamagata), Shanghai Institute of Materia Medica, Chinese Academy Shanghai 200031, China (H.-Y.W.), Department of Internal Medicine, Akita University School of Medicine, Akita 010-8543, Japan (Y.Y.), Kansai Electr Hospital, Osaka 553-0003, Japan (Y, Seino) and Genome Informatics, Center for Genomic Medicine, Graduate School of Medicine and Faculty of Medi Kvoto University, Kvoto 606-8501, Japan (A.S.), Correspondence should be addressed to M.K. (kasuga@med.kobe-u.ac.ip).

Received 3 March; accepted 6 June; published online 17 August 2008; doi:10.1038/ng.207

NATURE GENETICS ADVANCE ONLINE PUBLICATION

OPEN O ACCESS Freely available online

A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese

Fuu-Jen Tsai^{1,2,39}, Chi-Fan Yang^{4,59}, Ching-Chu Chen^{6,79}, Lee-Ming Chuang⁸, Chieh-Hsiang Lu⁹, Chwen-Tzuei Chang^{6,7}, Tzu-Yuan Wang^{6,7}, Rong-Hsing Chen^{6,7}, Chiung-Fang Shiu⁴, Yi-Min Liu⁴, Chih-Chun Chang⁴, Pei Chen⁴, Chien-Hsiun Chen^{4,5}, Cathy S. J. Fann⁴, Yuan-Tsong Chen^{4,5,10}*, Jer-Yuarn Wu^{4,5,11}*

1 School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan, 2 Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, Taichung, Taiwan, 3 Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan, 4 Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, 5 National Genotyping Center, Academia Sinica, Taipei, Taiwan, 6 Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan, 7 School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, 8 Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, 9 Department of Internal Medicine, Endocrinology and Metabolism, Chia-Yi Christian Hospital, Chia-Yi, Taiwan, 10 Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America, 11 Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan

Abstract

To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P=8.54×10⁻¹⁰; odds ratio [OR]=1.57; 95% confidence interval [CI]=1.36-1.82), and serine racemase (SRR) $(P = 3.06 \times 10^{-9}; OR = 1.28; 95\% CI = 1.18 - 1.39)$. We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 ($P = 9.65 \times 10^{-10}$; OR = 1.29, 95% CI = 1.19–1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations.

rs17584499 PTPRD rs391300 SRR

PLOS GENETICS

PLOS GENERALS

Discovering Asian-relevant Genes Asian GWAS Meta-analysis for T2 DM 25,079 cases and 29,611 controls

Stage1 : Discovery

✓ GWA meta-analysis combining 8 T2D GWA studies (6,952 cases vs. 11,865 controls)

Stage2 : in silico replication

✓ Validation of 3,756 SNPs selected from Stage1 (297 lead SNPs + their proxy SNPs)
in 3 T2D GWA studies (5,843 cases vs. 4,574 controls)

✓ Combined meta-analysis (Stages 1+2)

Stage3 : de novo replication

✓ Validation of 19 SNPs selected from Stage2

in 5 T2D studies (12,284 cases vs. 13,172 controls)

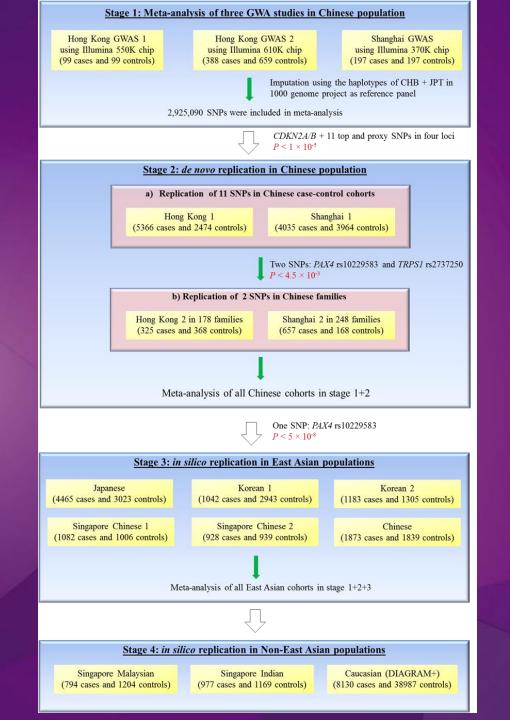
✓ Combined meta-analysis (Stages 1+2+3)

 $P < 5 \times 10^{-8}$

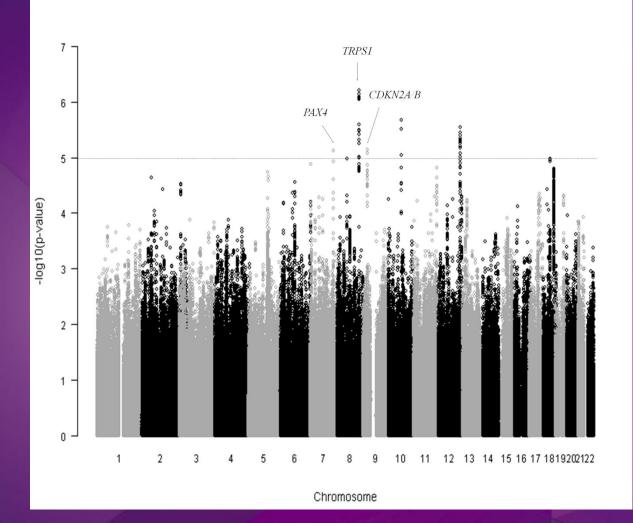
 $P < 10^{-5}$

 $P < 5 \times 10^{-4}$

Novel T2D SNPs


Cho YS et al Nature Genetics 2012

8 novel loci all implicated in beta cell development and protein metabolism


SNP	chr	Loci	Risk allele	OR (CI)	P-value	Possible functions
rs6815464	4	MAEA	С	1.13 (1.10-1.16)	1.57E-20	erythroblast enucleation & macrophages maturation
rs7041847	9	GLIS3	а	1.10 (1.07-1.13)	1.99E-14	beta cell development and insulin expression
rs6017317	20	FITM2- R3HDML- HNF4A	g	1.09(1.07-1.12)	1.12E-11	pancreatic islet development
rs6467136	7	GCC1	g	1.11 (1.07-1.14)	4.96E-11	organization of the trans-Golgi network
rs831571	3	PSMD6	С	1.09 (1.06-1.12)	8.41E-11	degradation of ubiquitinated proteins
rs9470794	6	ZFAND3	С	1.12 (1.08-1.16)	2.06E-10	zinc finger transcription factor
rs3786897	19	PEPD	а	1.10 (1.07-1.14)	1.30E-08	Beta cell development
rs1535500	6	KCNK16	t	1.08 (1.05-1.11)	2.30E-08	defective regulation of potassium channel activity

 To identify genetic susceptibility loci in Chinese patients with type 2 diabetes

Study	Cohort	<i>N</i> (Male %)	Age (years)	AAD (year)	Diabetes duration (years)	BMI (kg/m ²)	FPG (mmol/l)
Stage 1 (geno	ome scan)						
НК1	Control	99 (36.4)	37.3 ± 10.2	_	_	20.8 ± 2.0	4.7 ± 0.4
	T2D patient	99 (40.4)	40.6 ± 8.8	31.8 ± 7.7	8.0 ± 8.3	30.9 ± 4.4	-
HK2	Diseased control	659 (48.7)	37.1 ± 17.0	_	_	23.3 ± 3.7	-
	T2D patient	388 (49.5)	60.6 ± 10.8	51.1 ± 12.1	9.5 ± 7.0	25.0 ± 3.8	-
SH	Control	197 (50.8)	66.4 ± 10.1	-	_	20.6 ± 1.7	4.8 ± 0.4
	T2D patient	197 (57.9)	41.6 ± 10.4	34.5 ± 4.8	7.3 ± 8.5	23.8 ± 4.1	-
Stage 2 (de n	ovo replication in (Chinese)					
HK1	Adolescent control	985 (44.2)	15.5 ± 1.9	_	_	22.7 ± 5.4	4.9 ± 0.4
	Adults control	513 (47.0)	42.0 ± 10.4	-	_	19.9 ± 3.5	4.7 ± 0.3
	Elderly control	976 (51.4)	72.3 ± 5.3	-	-	23.2 ± 3.2	-
	T2D patient	5366 (45.1)	56.7 ± 13.4	48.8 ± 14.9	6.6 ± 6.9	24.6 ± 5.3	-
SH1	Control	3964 (37.6)	51.3 ± 13.5	-	-	23.6 ± 3.2	5.0 ± 0.5
	T2D patient	4035 (52.0)	61.2 ± 12.1	54.2 ± 11.3	7.2 ± 6.9	24.5 ± 3.5	-
HK Family 2	Control	368 (41.0)	37.0 ± 13.6	-	_	24.0 ± 4.1	4.9 ± 0.4
	T2D patient	325 (40.6)	48.0 ± 14.4	41.7 ± 13.1	6.3 ± 7.6	25.9 ± 4.4	-
SH	Control	168 (51.2)	62.8 ± 11.2	-	-	23.7 ± 3.5	4.8 ± 0.6
Family 2	T2D patient	657 (43.7)	54.6 ± 15.6	50.0 ± 14.2	4.9 ± 7.3	23.9 ± 3.5	-

					Hong Kong replication 1 (5,366 T2D vs 2,474 controls)			Shanghai replication 1 (4,035 T2D vs 3,964 controls)			Combined					
SNP	Chromosome	Nearest gene(s)	Position (B36)	Minor/ major allele	Case MAF	Control MAF	OR (95% CI)	$p_{\rm additive}$	Case MAF	Control MAF	OR (95% CI)	<i>P</i> additive	OR (95% CI)	p _{meta} (uncorrected)	<i>p</i> _{het}	I ²
rs10229583	7	PAX4	127034139	A/G	0.847	0.83	1.14 (1.03, 1.23)	0.0077	0.846	0.825	1.16 (1.08, 1.27)	3.7×10 ⁻⁴	1.15 (1.08, 1.22)	1.0×10 ⁻⁵	0.6406	0.000
rs2721960	8	TRPS1	116725904	T/C	0.657	0.644	1.05 (0.98, 1.14)	0.1566	0.655	0.638	1.08 (1.01, 1.15)	0.0277	1.06 (1.02, 1.12)	0.0095	0.7067	0.000
rs2737250	8	TRPS1	116731048	G/A	0.631	0.62	1.05 (0.98, 1.12)	0.1807	0.641	0.621	1.09 (1.02, 1.16)	0.0090	1.08 (1.02, 1.12)	0.0045	0.4582	0.000
rs3858158	10	COL13A1	71310056	C/T	0.516	0.521	0.98 (0.92, 1.05)	0.6000	0.569	0.561	1.03 (0.97, 1.10)	0.3211	1.01 (0.96, 1.05)	0.7408	0.3026	0.506
rs2395272	10	COL13A1	71310261	A/G	0.531	0.534	0.99 (0.93, 1.06)	0.7680	0.594	0.584	1.04 (0.97, 1.11)	0.2312	1.02 (0.97, 1.06)	0.4589	0.3027	0.364
rs57703465	10	COL13A1	71311074	T/C	0.654	0.662	0.96 (0.89, 1.04)	0.3463	0.667	0.656	1.05 (0.98, 1.12)	0.1502	1.01 (0.96, 1.06)	0.6467	0.0976	0.765
rs11065441	12	P2RX7	120045354	C/T	0.728	0.724	1.02 (0.94, 1.11)	0.6224	0.728	0.733	0.97 (0.91, 1.04)	0.4312	0.99 (0.94, 1.05)	0.7756	0.3748	0.000
rs684201	12	P2RX7	120054726	A/G	0.73	0.726	1.02 (0.94, 1.10)	0.5916	0.735	0.739	0.98 (0.91, 1.05)	0.5609	1.00 (0.94, 1.05)	0.9462	0.4332	0.000
rs11065450	12	P2RX7	120064040	A/C	0.682	0.688	0.97 (0.90, 1.05)	0.4995	0.702	0.707	0.98 (0.92, 1.05)	0.5520	0.98 (0.93, 1.03)	0.3699	0.9111	0.000
rs208290	12	P2RX7	120078439	T/C	0.612	0.609	1.01 (0.94, 1.09)	0.7086	0.643	0.645	0.99 (0.93, 1.06)	0.7950	1.00 (0.95, 1.05)	0.9605	0.6472	0.000
rs10849851	12	P2RX7	120081027	G/A	0.727	0.72	1.03 (0.95, 1.12)	0.4079	0.737	0.741	0.98 (0.91, 1.05)	0.5237	1.00 (0.95, 1.05)	0.9308	0.3002	0.068

Table 2 Association results for type 2 diabetes (T2D) with 11 top and proxy SNPs in de novo replication stage in Chinese populations

Nearest Entrez genes within 250 kb

p, p_{meta} and p_{het} represent p values from logistic regression without any adjustment under the additive genetic model, meta-analysis under a fixed effect model (uncorrected for multiple testing) and test of heterogeneity, respectively

ORs are reported with respect to the minor allele

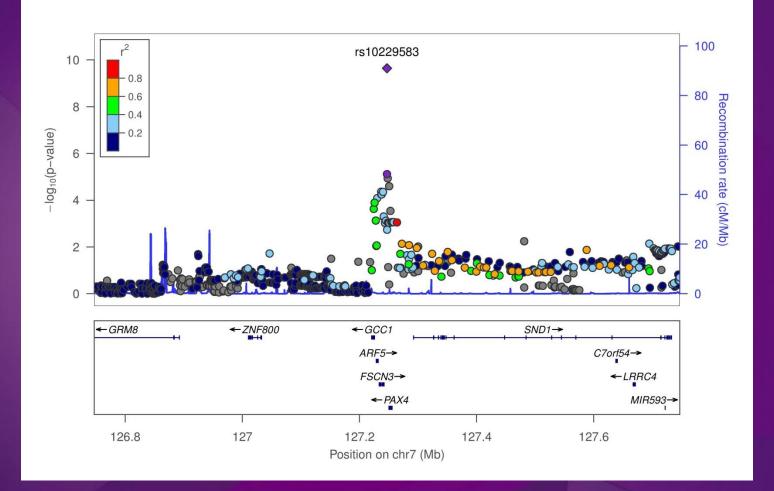
Study	Cohort	N (Male %)	Age (years)	AAD (year)	Diabetes duration (years)	BMI (kg/m ²)	FPG (mmol/l)
Stage 3 (in silico 1	replication in East	t Asians)					
Japanese	Control	3023 (54.5)	51.9 ± 15.2	-	-	22.4 ± 3.7	-
	T2D patient	4465 (68.0)	65.8 ± 10.0	56.5 ± 11.4	9.4 ± 8.4	24.1 ± 3.8	-
Korean 1	Control	2943 (46.0)	51.1 ± 8.6	-	-	24.1 ± 3.0	4.5 + 0.4
	T2D patient	1042 (51.7)	56.4 ± 8.6	-	-	25.5 ± 3.3	7.0 ± 2.6
Korean 2	Control	1305 (54.5)	65.2 ± 2.6	-	-	23.9 ± 3.0	5.0 ± 0.5
	T2D patient	1183 (46.5)	58.6 ± 7.1	-	-	25.2 ± 3.4	7.4 ± 2.7
Singapore Chinese 1	Control	1006 (21.6)	47.7 ± 11.1	-	-	22.3 ± 3.7	4.7 ± 0.4
	T2D patient	1082 (37.2)	65.1 ± 9.7	55.7 ± 12.0	-	25.3 ± 3.9	-
Singapore Chinese 2	Control	939 (63.8)	46.7 ± 10.2	_	_	22.8 ± 3.4	4.7 ± 0.5
	T2D patient	928 (64.9)	63.7 ± 10.8	52.2 ± 14.4	-	25.4 ± 3.8	-
Chinese	Control	1839 (43.7)	54.1 ± 9.2	-	-	24.00 ± 3.18	5.04 ± 0.35
	T2D patient	1873 (46.0)	58.6 ± 8.4	-	-	25.00 ± 3.24	8.43 ± 2.90

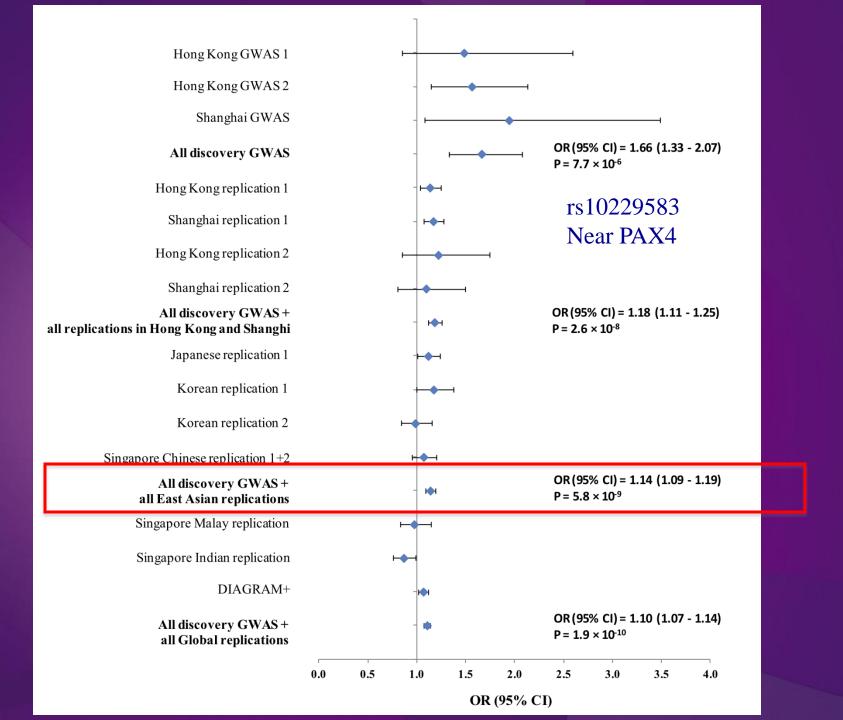
Identification of novel T2D loci in Chinese

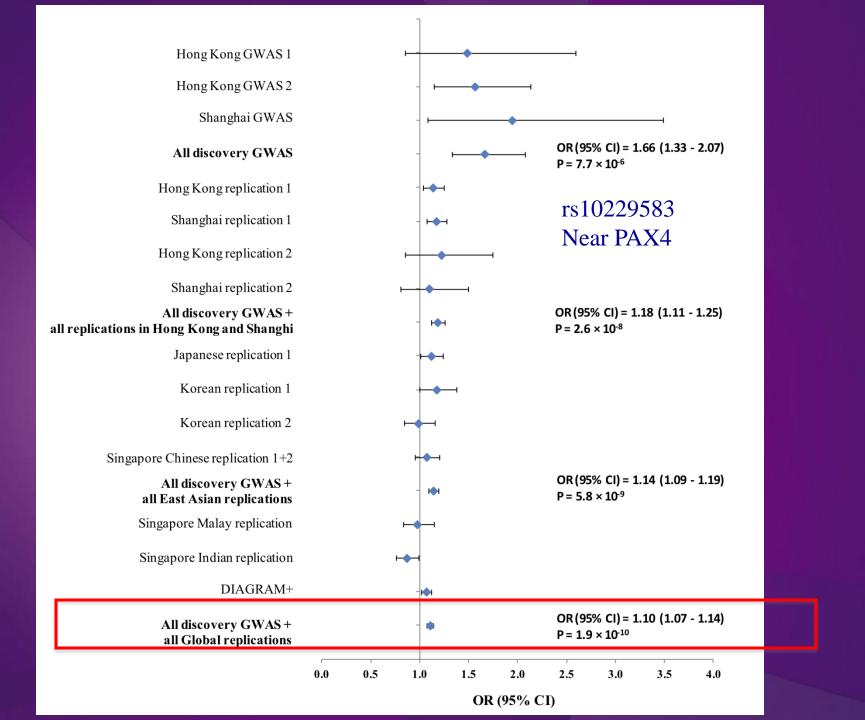
Stage 1: Meta-analysis of GWAS in Chinese 684 T2 DM cases: 955 controls

Stage 2: *de novo* replication in Chinese 11067 T2 DM: 7929 controls

Stage 3: *in silico* replication in East Asians 10573 T2 DM: 11055 controls

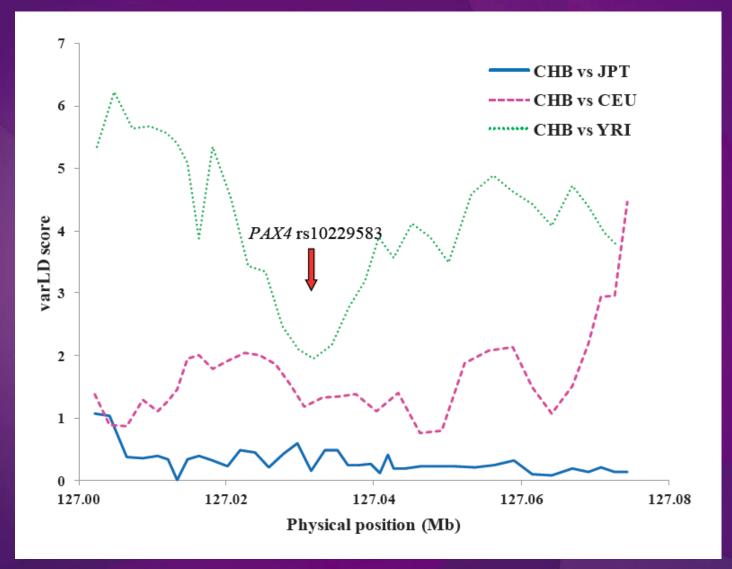

Stage 4: *in silico* replication in other populations 9901 T2 DM: 41360 controls Global meta-analysis of stages 1+2+3+4 31541 cases: 60344 controls

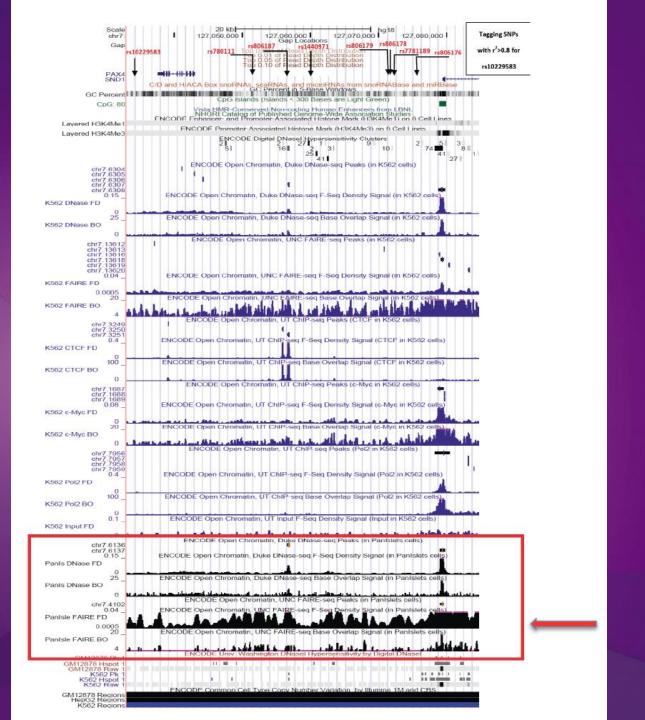

			N		Risk alle	ele frequenc	cies			
Stage	Cohort	Adjustment	T2D	Control	T2D	Control	OR (95% CI)	<i>P</i> additive (uncorrected GC)	<i>p</i> _{het}	Î
1. Discovery	Hong Kong GWAS 1 Hong Kong GWAS 2	Sex and age Sex and age	99 388	99 659	0.879 0.857	0.818 0.820	1.48 (0.85, 2.59) 1.56 (1.14, 2.13)	0.1645 0.0055		
	Shanghai GWAS	None	197	197	0.873	0.777	1.92 (1.32, 2.79)	5.0×10 ⁻⁴		
	Meta-analysis of GWAS		684	955			1.66 (1.33, 2.07)	7.7×10 ⁻⁶	0.6455	0.000
 De novo replications in Hong Kong and Shanghai 	Hong Kong replication 1 Shanghai replication 1	None None	5,366 4,035	2,474 3,964	0.847 0.846	0.831 0.825	1.13 (1.03, 1.24) 1.17 (1.07, 1.27)	7.7×10^{-3} 3.7×10^{-4}		
	Hong Kong family replication 2	Sex and age	325	368	0.872	0.856	1.22 (0.85, 1.74)	0.2817		
	Shanghai family replication 2	Sex and age	657	168	0.824	0.813	1.09 (0.80, 1.49)	0.5757		
	Replication in Chinese		10,383	6,974			1.15 (1.08, 1.22)	1.0×10 ⁻⁵	0.6406	0.000
	Meta-analysis of Chinese		11,067	7,929			1.18 (1.11, 1.25)	2.6×10 ⁻⁸	0.0839	0.596
3. In silico replications in East Asians	Japanese replication Korean replication 1	None None	4,465 1,042	3,023 2,943	0.892 0.894	0.881 0.878	1.11 (1.01, 1.23) 1.17 (0.99, 1.38)	0.0379 0.0577		
	Korean replication 2	None	1,183	1,305	0.841	0.844	0.98 (0.84, 1.15)	0.8101		
	Singapore Chinese replication 1 Singapore Chinese replication 2	None None	1,082 928	1,006 939	0.832 0.833	0.819 0.816	1.07 (0.95, 1.20)	0.2728		
	Chinese replication	First 2 PCs	1,873	1,839	0.8396	0.8167	1.17 (1.04, 1.32)	0.01091		
	Replication in other East Asian		10,573	11,055			1.10 (1.04, 1.17)	6.0×10 ⁻⁴	0.6767	0.000
	Meta-analysis of East Asian		21,640	18,984			1.14 (1.09, 1.19)	2.3×10^{-10}	0.5939	0.000
 In silico replications in South Asians and Europeans 	Singapore Malaysian replication Singapore Indian replication	None None	794 977	1,204 1,169	0.798 0.647	0.804 0.682	0.97 (0.83, 1.14) 0.86 (0.76, 0.98)	0.7185 0.0276		
	DIAGRAM	None	8,130	38,987	-	-	1.06 (1.02, 1.12)	8.6×10 ⁻³		
	Replication in non-East Asian		9,901	41,360			1.03 (0.99, 1.08)	0.1156	0.0042	0.878


ORs and 95% CIs were reported with respect to the T2D-related risk alleles (G)

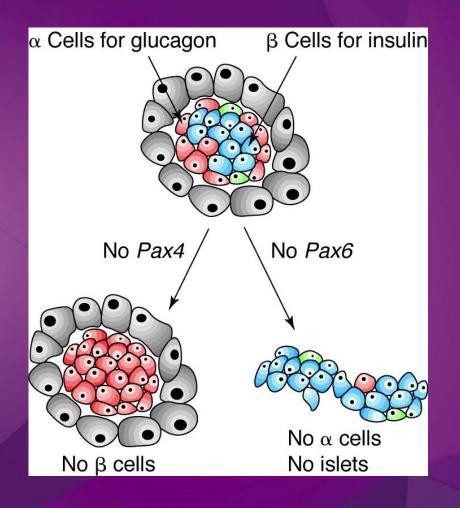
 $p_{\rm het}$ refers to the p value obtained from the heterogeneity test

GC, genomic control; PC, principal components

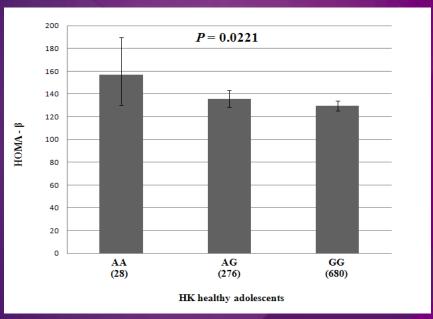

Heterogeneity in effects between East Asians and other populations


	OR	Heterogene	eity of OR	
Population	(95% CI)	Q test P	I^2	
Chinasa	1.18	•		
Chinese	(1.11, 1.25)			
Innonasa Kanaan	1.09	0.1254	0.5742	
Japanese + Korean	(1.01, 1.18)	0.1234	0.5742	
DIACDAM	1.06	0.0088	0.9544	
DIAGRAM+	(1.02, 1.12)	0.0088	0.8544	
Malazzian - Indian	0.90	$1.1 imes 10^{-5}$	0.0495	
Malaysian + Indian	(0.82, 1.00)	1.1 ~ 10	0.9485	

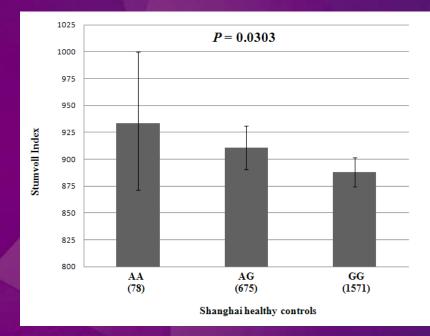
Q test P and I^2 refer to the statistical significance and quantified index of heterogeneity test of OR between Chinese and other populations, respectively.



Significant Variation in LD and genetic architecture around the identified loci



Function of PAX4



Non-diabetic carriers of the risk variant had impaired beta-cell function

Healthy adolescents in HK

Shanghai healthy controls

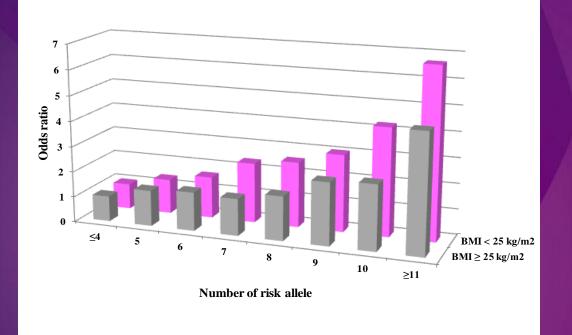
Associated with earlier age of diagnosis among Chinese with T2DM: $P=2.3 \times 10^{-4}$, $\beta_{unadiusted} \pm SE = -0.90 \pm 0.24$)

Ma RC, Hu C et al, *Diabetologia 2013*

GWAS meta-analysis in Chinese patients with T2DM identified a novel loci for T2DM

- Non-diabetic individuals who carry the risk variant have evidence of impaired beta-cell function
- The variant resides in a region of genetic variability

ARTICLE


Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near *PAX4*

R. C. W. Ma · C. Hu · C. H. Tam · R. Zhang · P. Kwan · T. F. Leung · G. N. Thomas · M. J. Go · K. Hara · X. Sim · J. S. K. Ho · C. Wang · H. Li · L. Lu · Y. Wang · J. W. Li · Y. Wang · V. K. L. Lam · J. Wang · W. Yu · Y. J. Kim · D. P. Ng · H. Fujita · K. Panoutsopoulou · A. G. Day-Williams · H. M. Lee · A. C. W. Ng · Y-J. Fang · A. P. S. Kong · F. Jiang · X. Ma · X. Hou · S. Tang · J. Lu · T. Yamauchi · S. K. W. Tsui · J. Woo · P. C. Leung · X. Zhang · N. L. S. Tang · H. Y. Sy · J. Liu · T. Y. Wong · J. Y. Lee · S. Maeda · G. Xu · S. S. Cherny · T. F. Chan · M. C. Y. Ng · K. Xiang · A. P. Morris · DIAGRAM Consortium · S. Keildson · The MuTHER Consortium · R. Hu · L. Ji · X. Lin · Y. S. Cho · T. Kadowaki · E. S. Tai · E. Zeggini · M. I. McCarthy · K. L. Hon · L. Baum · B. Tomlinson · W. Y. So · Y. Bao · J. C. N. Chan · W. Jia

Received: 21 October 2012 / Accepted: 31 January 2013 / Published online: 27 March 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com

Targeted re-sequencing studies of PAX4 region

Utilization of genetic score for T2DM

CGS from 8 loci:

IGF2BP2 rs4402960, *WFS1* rs734312, *CDKAL1* rs7756992, *SLC30A8* rs13266634, *CDKN2A/B* rs10811661, *HHEX* rs7923837, *TCF7L2* rs7903146 *KCNQ1* rs2237892

Controls: increasing number of risk alleles for CGS asso with lower HOMA-beta For T2DM: increasing number of risk alleles asso with lower BMI, WC Increasing alleles asso with younger age of onset of T2DM Increasing numbers of alleles also asso. with insulin use at time of recruitment

Tam CH et al, PLoS One, in press

Conclusions

•Genome-wide association study in Chinese have identified a novel locus for T2DM

•The risk variant is associated with reduced beta-cell function and earlier age of onset in Asians

 Targeted re-sequencing has identified additional variants within the region

 Incorporation of genetic markers to improved prediction of treatment outcome

Acknowledgement

Mark McCarthy Ele Zeggini Sanger

Maggie Ng Wake Forest

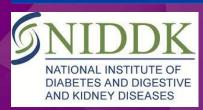
E. Shyong Tai

NUS

Yoon Shin Cho T. Kadowaki KNIH/Hallym Tokyo

Xu Lin SIBS

Theme-based project team: Lan Hui-yao Huang Yu Juliana Chan **Brian** Tomlinson Weichuan Yu Si Lok Stephen Tsui Szeto Cheuk Chun Ting Fung Chan Kevin Yip Xiaodan Fan Nelson Tang Wing Yee So + Many others Medical and nursing staff of DM centre


Innovation and Technology Fund Innovation and Technology Commission The Government of the Hong Kong Special Administrative Region

University Grants Committee

大學敎育資助委員會

EFSD

European Foundation for the Study of Diabetes

CUHK (Focused Investment Fund) **HK** Foundation for Research and Development In Diabetes Liao Wun Yuk Memorial Fund